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Sugars fuel life and exert numerous regulatory actions that are

fundamental to all life forms. There are two principal

mechanisms underlie sugar ‘perception and signal

transduction’ in biological systems. Direct sensing and

signaling is triggered via sugar-binding sensors with a broad

range of affinity and specificity, whereas sugar-derived

bioenergetic molecules and metabolites modulate signaling

proteins and indirectly relay sugar signals. This review

discusses the emerging sugar signals and potential sugar

sensors discovered in plant systems. The findings leading to

informative understanding of physiological regulation by sugars

are considered and assessed. Comparative transcriptome

analyses highlight the primary and dynamic sugar responses

and reveal the convergent and specific regulators of key

biological processes in the sugar-signaling network.
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Introduction
Sugars produced from plant photosynthesis play a central

role to support and integrate the functions and actions of

internal and external regulatory signals in driving diverse

biological processes from embryogenesis to senescence.

Although the knowledge on how plants produce, transport,

metabolize, store and sense diverse sugar signals has been

significantly advanced [1,2,3,4,5,6,7,8,9], the spectrum of

sugar signals, sensors and molecular mechanisms mediat-

ing primary signaling remained to be fully explored. Many

informative review articles presented recent progress on

broad aspects of sugar-related research in plant biology,

encompassing source-sink communication [9,10], sugar-

hormone interactions [11], new sugar transporters and

their functions [8], sugar regulation of plant development

[9,12,13,14,15], chloroplast-nuclear signaling [16], sucrose,
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starch and trehalose metabolism and signaling

[2,3,5,6,7,10,13,15,17], clock-sugar connections [18], as

well as sugar and stress [19]. New discoveries on key

regulators of sugar and energy signaling have also been

thoroughly reviewed [4,5,20,21,22,23,24,25,26,27]. Exten-

sive efforts of past research on sugar regulation have

mainly focused on long-term phenotypic characterization

in mutants and transgenic plants. The accumulated

knowledge will provide an excellent and comprehensive

platform for future research, especially on elucidating the

molecular, cellular and biochemical basis of sugar sensing

and signaling underlying the plasticity and potential in

plant growth and development. Emphasis in this review is

placed on the emerging understanding of the dynamic,

primary and integrated sugar signaling mechanisms and

transcriptional networks triggered by direct and indirect

sugar signals via sugar, energy and metabolite sensors.

Sugar signals and intracellular sensors
The complex and intertwined plant metabolic and regula-

tory pathways provide plastic capacity to generate and

regulate a wide range of sugar signals originated from

different sources, including active photosynthetic cells,

dynamic storage reservoir, and organs for nutrient remobi-

lization (Figure 1) [2,4,6,7,9,19,28,29,30,31�,32�]. Under-

standing the physiological status and cellular/subcellular

actions of each sugar signal relies on the recognition that

sugar providing and perceiving cells, as well as sugar

metabolic pathways and transport systems in different

organs, tissues and cells, are subject to diverse modulations

by other nutrient supplies, developmental stages, environ-

mental cues, hormonal regulation, and interactions with

microbes and animals [2,7,8,9,19,23,33,34�]. For instance,

high sugar signals can either promote leaf development

and photosynthesis with abundant nitrogen supplies or

lead to photosynthesis gene repression and developmental

arrest at low nitrate levels [35,36,37]. Plant sugar responses

are also significantly influenced by phosphate levels [33].

Although sucrose is the main sugar for systemic transport

from source to sink in plants [38], many of the sugar

responses observed in plants are channeled through inver-

tases or sucrose synthases [7,39] to generate glucose and

other signaling sugars to trigger signal transduction via

direct perception by diverse sensors or indirect signaling

by energy and metabolite sensors. However, compelling

evidence also supports multiple sucrose signaling path-

ways (Figure 1) [3,5].

Hexokinases (HXKs) are the first demonstrated intracellu-

lar glucose sensors in plants [4,23,36,37,40,41,42,43,44,45].

Plant genomes encode multiple hexokinases (HXKs) and

HXK-like (HKL) proteins that appear to serve overlapping
www.sciencedirect.com
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Sugar signals and sensors. Distinct sugar signals are generated locally or systemically via diverse sources. FBP, fructose-1,6-bisphosphtase; FLN,

fructokinase-like protein; FRK, fructokinase; G6P, glucose 6-phosphate; G1P, glucose 1-phosphate; Gln, glutamine; HXK1, hexokinase1; INV,

invertase; KIN10,11, Arabidopsis protein kinase 10,11; OGT, O-linked N-acetylglucosamine (O-GlcNAc) transferase; pm, plasma membrane; RGS,

regulator of G-protein signaling; SnRK1, sucrose-non-fermentation-related protein kinase1; SUS, sucrose synthase; SUT, sucrose transporter; T6P,

trehalose 6-phosphate; TOR, target of rapamycin; TPS, T6P synthase.
and distinct functions in signaling and metabolism

[4,36,37,40,41,42,43,44,45,46]. In Arabidopsis, HXK1 plays

dual roles in signaling and metabolism, which can be

uncoupled by the S177A mutation that abolishes the glu-

cose phosphorylation activity but possesses full glucose

sensor function based on diverse sugar responses

[4,23,36,40,41]. The various functions of the Arabidopsis
HXK1 glucose sensor are likely evolutionarily conserved

and shared by specific HXKs in moss, maize, rice,

tomato, poplar, Selaginella moellendorffi and tobacco

[36,37,41,42,43,44,45]. A recent structural study showed

that both HXK1 and HXK1(S177A) formed co-crystals with

glucose in the single glucose binding pocket and induced

similar conformational changes. The findings support the

full sensor function of HXK1(S177A) without glucose

phosphorylation [36,47]. However, the relatively low Kd
in the range of 15–89 m; glucose was measured by the

isothermal titration calorimetry (ITC) assay based on tran-

sient glucose binding in vitro. It seems inconsistent with

the physiological requirement of glucose concentrations for

biological responses in cells and plants, which would need
www.sciencedirect.com 
further investigation [31�,36,40,48,49]. The determination

of the physiological Kd of HXK1 as a glucose sensor by in
vitro and in vivo analyses will facilitate the molecular

dissection of the direct and indirect glucose signaling

responses and regulatory networks.

Interestingly, recent research has uncovered new physio-

logical functions of sugar phosphorylation and metabo-

lism mediated by HXK1. For instance, a rare sugar

D-allose requires HXK1-mediated sugar phosphorylation

but not the sensor function to trigger a long-term activa-

tion of abscisic acid biosynthesis and signaling in Arabi-
dopsis and rice leading to growth inhibition [50]. Another

critical role of HXK1-based metabolic activity was

revealed in the imps1 mutant, which is deficient for the

enzyme, myo-inositol 1-phosphate synthase (MIPS) cat-

alyzing the limiting step of myo-inositol synthesis, and

exhibits light-dependent formation of lesions on leaves

due to salicylic acid-dependent programmed cell death

(PCD) [51]. The somi1 (suppressor of mips1) mutant sup-

pressed cell death and defense responses of mips1 and was
Current Opinion in Plant Biology 2016, 33:116–125
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mapped to the T231I mutation critical for glucose phos-

phorylation. Consistently, mips1 did not affect the HXK1

glucose sensor function. HXK1 (S177A) with reduced

glucose metabolism alleviates PCD in mips1 [51]. The

new findings suggest that HXK1 appears to gate multiple

glucose metabolic pathways in plant cells. The channel-

ing and regulation of glucose to myo-inositol metabolism

represents an emerging regulatory network, which may

explain previously unknown connections between sugar,

stress and immune responses in plants [19].

In addition to glucose, ample evidence has indicated that

sucrose is perceived as a distinct sugar signal, which

cannot be substituted by glucose or fructose, in control-

ling flowering, seed and storage organ development,

branching, and pigmentation [3,5,6,7]. Compelling exam-

ples are the sucrose-specific repression of the beet leaf

BvSUT1 gene encoding the sugar proto-sucrose sympoter

[52] and the bZIP11 protein translation via the 50UTR

upstream open reading frame (uORF) [53]. Sucrose also

specifically stabilizes DELLA proteins to activate MYB75
expression and anthocyanin biosynthesis, but inhibits cell

expansion [54�], whereas both sucrose and glucose acti-

vate auxin biosynthesis and cell expansion involving

HXK1 and complex actions of PIF transcription factors

[11,55]. In contrast to the long-standing theory that auxin

controls apical dominance, artificially increasing sucrose

levels repress the expression of BRANCHED1 transcrip-

tion factor and promote axillary bud outgrowth [34�]. It is

interesting to note that sucrose activates calcium signal-

ing and calcium-dependent protein kinases [3] and plants

possess a large number of proteins and enzymes with

conserved sugar binding domains that play critical roles in

sucrose transport and metabolism [7,8]. Future investiga-

tion may explore the roles of SUT proton-symporters,

voltage-activated calcium channels, and membrane-asso-

ciated sucrose synthases (SUS) as potential sucrose sen-

sors and signaling effectors distinct from glucose sensors

and signaling mechanisms (Figure 1) [56,57,58].

Recent research has implicated a tight link between

endogenous sucrose and trehalose 6-phosphate (T6P)

levels, and it was proposed that T6P is a signal of sucrose

availability and influences the relative amounts of sucrose

and starch [6,59]. Extensive genetic and transgenic

manipulations of trehalose metabolic enzymes have

provided fascinating findings that many metabolic and

developmental phenotypes are associated with altered

levels of T6P, trehalose synthase (TPS) or T6P phospha-

tase (TPP) (Figure 1), including gene expression,

metabolism, seed development, shoot expansion and

flowering in Arabidopsis, tobacco and maize plants

[5,6,10,12,13,15,59,60,61,62,63�,64,65]. New develop-

ment based on genetic, biochemical and genomic studies

has led to important findings that T6P inhibits the activity

of the evolutionarily conserved energy sensor complex

SNRK1 (Sucrose NonFermenting1-Related Kinase1) via
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unknown protein regulators [21,62,66�,67]. It remains a

possibility that the surprisingly large plant gene family

encoding TPS and TPP proteins lacking prominent en-

zymatic activities may act as T6P regulators or sensors and

modulate SNRK1 activity (Figure 1) [67,68,69].

Novel sugar sensors
Besides glucose, sucrose and T6P, other sugar signals and

putative sensors implicated in regulating plant gene ex-

pression, metabolism and development are also emerging

[32�,70,71,72,73�]. An important example is the discovery

of new transcription factors containing b-amylase (BAM)-

like domain characteristic of starch degradation enzymes

in higher plants but no in algae and mosses. The BAM

domain of BAM8 appears to mediate DNA-binding and

transcriptional activation based on a synthetic reporter

driven by BZR1-BAM responsive cis-elements in plant

cells and transgenic plants, whereas BAM7 interacts with

BAM8 but may act as a transcription repressor [73�].
Future studies could lead to new advances in supporting

their potential role as sensors of starch metabolism.

Intrigued by the observation that gin2 is insensitive to

glucose but still sensitive to fructose, an integrated study

using cell-based functional screen and genetic mutations

has identified the nuclear localized fructose1-6-bispho-

sphatase (FBP/FIS1, FRUCTOSE-INSENSITIVE1) as

a putative fructose sensor uncoupled from its catalytic

activity [71]. It will be interesting to determine whether

FBP is connected to the fructose-specific signaling sup-

pressor, the Arabidopsis NAC89 transcription factor, in the

nucleus sharing downstream interactions with abscisic

acid and ethylene signaling pathways [74]. Currently,

there is no evidence for the involvement of fructokinases

(FRKs), catalyzing irreversible fructose phosphorylation

and playing a key role in vascular development, in sugar

sensing [4]. However, proteomic and genetic studies have

identified FRK-like proteins (FLN1 and FLN2) in the

plastid-encoded RNA polymerase complexes and regu-

late plastic gene transcription and chloroplast develop-

ment [75].

Sensors of extracellular sugars
Besides intracellular sugar sensing, regulator of G-protein

signaling (RGS1) as a seven-transmembrane domain pro-

tein on the plasma membrane, has been proposed to play a

critical role as external glucose sensor in plants. An impor-

tant advance is the recent determination of RGS1 phos-

phorylation by WNK8 (WITH NO LYSINE8), which

leads to RGS1 endocytosis and G-protein-mediated sugar

signaling and cell proliferation [76]. By combining thor-

ough dose-duration experiments with mathematical

modeling, it has been shown that 6% glucose stimulates

rapid RGS1 endocytosis through WNK8 and WNK10,

whereas 2% glucose slowly activates the pathway through

WNK1, allowing the cells to respond similarly to transient,

high-intensity signals and sustained, low-intensity signals
www.sciencedirect.com
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[77�]. The RGS1 signaling pathway appears to be unique

in the requirement of extremely high glucose and the rgs1
mutant diminishes the regulation of a few glucose respon-

sive genes in genome-wide analyses. As the RGS1 specific

marker gene At4g01080 is strongly activated by 100–
300 mM D-glucose, D-fructose and sucrose, RGS1 may

be a plasma membrane sensor or partner responding to

changes of multiple extracellular sugars [78]. It will be a

promising investigation to determine whether cell-wall

invertases or sucrose transporters are required to generate

high local sugar signals to stimulate RGS1 signaling [7]. A

significant recent study has implicated a role of RGS1 in

soybean nodulation [79�]. Distinct from RGS1 phosphor-

ylation by WNKs to trigger endocytosis in Arabidopsis
sugar signaling [77�], Nod factor receptor1 (NFR1) phos-

phorylates RGS1 to accelerate GTPase activity and main-

tains Ga proteins in inactive trimeric conformation. It will

be interesting to determine whether RGS1 also functions

as a sensor of extracellular sugars in the soybean nodula-

tion process and how RGS1 senses and transduces sugar

signals.

Indirect sugar sensing via energy sensors
Manipulations of key enzymes involved in sugar and starch

metabolism have started to provide new insights into how

the physiological sugar levels modulated by light, CO2 and

photoperiod alter gene expression and plant developmen-

tal processes [7,9,36,38,45,60,61,63�,80,81,82,83,84,85].

Many key questions remain to be answered regarding

the signaling actions of physiological levels of sugar signals

in extracellular spaces and in different subcellular com-

partments [7,38]. Besides direct sensing by sugar sensors

such as HXK1, intracellular sugar levels can be perceived

as metabolic input by energy sensing regulators to coordi-

nate energy status and plant metabolism and growth.

Recent research on the evolutionarily conserved energy

sensor TOR (target of rapamycin) protein kinase is espe-

cially informative in uncovering new aspects of glucose

signaling in plants [20,22,23,25,26,27,31�]. Analyses with

chemical inhibitors demonstrate that glucose metabolism
Figure 2
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through glycolysis and the electron transport chain in the

mitochondria is required to activate TOR signaling and

control global gene transcription. The use of a thymidine

analog, 5-ethynyl-20-deoxyuridine (EdU) also enables in
situ visualization of photosynthesis- or glucose-stimulated

cell-cycle S-phase entry in the primary root meristem from

quiescence after the depletion of maternal sugar supplies

(Figure 2) [31�]. Glucose-TOR signaling is activated below

1 mM glucose via metabolic and energy signaling relay,

which is coordinated by shoot-root sugar communication

[31�]. Future investigation will expand our understanding

on the connections between physiological sugar levels and

putative sugar regulators or particular energy sensors and

specific signaling pathways in different biological contexts

and processes.

Under sugar deprivation conditions, the evolutionarily

conserved energy sensor complex SNRK1 plays central

regulatory functions in metabolism, stress signaling and

plant development [9,10,15,21,23,24]. In Arabidopsis,
KIN10/11 protein kinases provide catalytic activities in

the SNRK1 complex and orchestrate global gene expres-

sion changes to activate catabolism but repress anabolism

[21,23,24,70]. Recent exciting progresses have identified

new transcription factors as Arabidopsis KIN10 phosphor-

ylation targets, including bZIP63, MYC2, NAC2/ATAF1,

FUS3 and IDD transcription factors involved in low

energy responses in darkness, submergence, starvation,

and flowering [15,84,86,87�,88�,89]. Direct phosphoryla-

tion by KIN10 protein kinase promotes bZIP63-bZIPS

dimerization and the transcriptional activation of bZIPs,

NAC2 and FUS3 [84,87�,88�]. Phosphorylation by KIN10

reduces MYC2 protein stability and transcriptional activ-

ity of IDD8 [86]. Surprisingly, only KIN10 but not KIN11

directly phosphorylates bZIP63 and IDD, even though

the single kin10 or kin11 mutants do not show overt

phenotypes [70,87�,89]. How KIN10 phosphorylation

contributes to the opposite leaf senescence phenotypes

of bzip63 and bZIP63 overexpression requires further

molecular, biochemical and physiological insights
0 

2 

4 

6 

8 

10 

1 2 3 4 5 6 

R
oo

t l
en

gt
h 

(m
m

) 

days 

- 
Glc 
LC
LC/D 

lc LC LC/D 

Current Opinion in Plant Biology

n and photosynthesis. After seed sugar depletion at 3 DAG,

d on endogenous sugars derived from photosynthesis in Arabidopsis

is inhibitor; EdU, 5-ethynyl-20-deoxyuridine; L, light.

Current Opinion in Plant Biology 2016, 33:116–125



120 Cell signalling and gene regulation
[70,87�]. Besides transcriptional controls, new mecha-

nisms of regulation by mRNA stability and miRNAs

provide additional layers of molecular controls in dynamic

sugar responses [9,80,81,90,91,92�].

Another novel finding in the indirect sugar signaling

mechanism came from the functional characterization of

Arabidopsis SEC (SECRET AGENT) encoding a specific

O-linked N-acetylgluocosamine (O-GlcNAc) transferase

(OGT). SEC promotes gibberellin signaling by O-GlcNA-

cylating DELLA transcription repressors and prevents the

interaction and suppression of multiple transcription fac-

tors, BZR1, PIF4, PIF5 and JAZ1, involved in brassinos-

teroid, light and jasmonate signaling, respectively [32�].
Further research advances will resolve the remaining

puzzles regarding the physiological and biochemical func-

tions of another Arabidopsis OGT paralog SPY, carrying
Figure 3
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out an opposite repressor role in gibberellin signaling but

related functions with SEC in embryogenesis. As

O-GlcNAc is synthesized from glucose, lipid and gluta-

mine (Figure 1), and DELLAs are the convergent reg-

ulators in hormonal, sugar and stress signaling crosstalk

[11,93,94], OGT likely act as a pivotal sensor in modulat-

ing and integrating nutrient, hormonal and stress signaling

pathways central to plant growth and development.

Primary and dynamic sugar signaling network
Comprehensive transcriptome analyses provide a powerful

approach to explore dynamic and primary sugar responses

and to discover new regulators in sugar-mediated process-

es. Over the past decade, many microarray studies have

been performed under different conditions. Arabidopsis
seedlings and adult leaves were analyzed with different

concentrations of exogenous sugars, as well as cell-based
Protein degradation (PD) 
Lipid degradation 
Amino acid degradation 
Cell wall degradation 
Gluconeogenesis 
CHO metabolism 
Secondary metabolism 
Signalling 
Transcription (TF) 
Transport (TP) 
Photosynthesis (PS) 
Development 
Stress 

DOWN 

ugar transcriptional network 

S
U

C
_D

N
 

G
LC

_D
N

 
K

IN
_P

D
 

T
O

R
_P

D
 

S
U

C
_P

S
 

K
IN

_T
F

 
T

O
R

_T
F

 
S

U
C

_T
F

 

T
O

R
_T

P
 

S
U

C
_T

P
 

G
LC

_T
F

 
K

&
T

_T
F

 

–3 
–2 
–1 
 0 
 1 
 2 
 3 

Log2

2560 sugar DOWN genes 

Current Opinion in Plant Biology

 data are clustered based on key functional gene sets regulated by

ng KIN10 targets [70], TOR targets [31�], E2Fa targets [31�], sucrose

ary metabolism and secondary metabolism are included using

presentative studies (Log2 � 1 or � �1; q-value � 0.05). Totally

 heatmap, with 428 convergent up-regulated genes and

www.sciencedirect.com



Dynamic sugar signaling Li and Sheen 121

Figure 4
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transient expression systems by manipulating sensors and

signaling components [31�,49,70,90,95,96,97,98]. An inte-

grated analysis of four representative genome-wide expres-

sion profiling data reveals a convergent energy-signaling

network modulating nearly 1,300 genes in rapid sugar

responses (2–4 h) (Figure 3). Importantly, TOR and

KIN10 protein kinases are central regulators in sugar-

mediated energy signaling, but act antagonistically in

the regulation of convergent primary sugar responsive

genes [31�,49,70,90,91,97,98]. Among the key functional

classes regulated by the KIN10-TOR and sucrose/glucose

(KTSG) convergent network, genes involved in protein

synthesis, cell cycle, signaling, transcription, glycolysis,

TCA cycle, mitochondria electron transport chain, as well

as secondary carbon metabolism are activated by both

glucose and sucrose. On the other hand, genes participat-

ing in transcription, diverse transporter functions, as well as

the degradation of protein, amino acid, lipid and cell wall

are repressed by sugars (Figure 3).

Besides the convergent sugar signaling program, it is

important to note that the differences in gene expression

profiles may reflect the existence of truly distinct regula-

tory programs controlled by either sucrose or glucose, or

may represent specific features of each experimental

system and approach for data generation. For instance,

some genes activated by glucose-TOR signaling are
www.sciencedirect.com 
missing from seedlings stimulated by both sucrose and

glucose. It is likely that the primary root meristem cells

expressing cell cycle genes and the TOR targeted tran-

scription factor E2FA target genes are more significantly

represented in 3-day seedlings [31�] vs. 8-9 day seedlings

[49,96]. In future research, it will be crucial to uncover

new biological regulation of specific TOR and KIN10

target genes in not only seedlings but also adult plants,

apical meristems and diverse cell types that may act in

multiple metabolic, stress and developmental pathways

[5,12,15,60,61,63�,70,99]. Notably, sucrose treated seed-

lings appear to modulate many more uniquely regulated

genes that may provide important information for future

dissection of the sucrose-specific pathways [3,5,6,7].

Despite the overt convergence between the TOR and

KIN10 target genes in rapid sugar responses, how Arabi-
dopsis TOR and KIN10 protein kinases regulate the vast

primary transcriptional programs of diverse genes in an

opposite manner represents a major challenge. In meso-

phyll protoplasts, KIN10 overexpression inhibits TOR-

mediated phosphorylation of S6K1 (Xiong and Sheen,

unpublished) [70,100]. However, it remains unclear

whether KIN10 directly phosphorylates and inactivates

TOR kinase through the phosphorylation of RAPTOR as

a regulatory subunit in the TOR sensor complex [26,101].

Although prior studies have emphasized TOR functions
Current Opinion in Plant Biology 2016, 33:116–125
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in ribosome biogenesis, protein stability and translational

control [22,25,26,27,102,103,104], the identification of

E2FA as a direct TOR kinase substrate [31�] opens up

new mechanisms of direct and rapid phosphorylation of

transcription factors by sugars in central metabolic and

growth pathways. Importantly, this type of regulation is

independently controlled or co-regulated by the SNRK1

energy sensor and the HXK1 glucose sensor (Figure 4). It

is most likely that the modulation of related transcription

factors on distinct phosphorylation sites by TOR and

SNRK1 to mediate contrast regulation in response to

sugar availability and energy status. Sensitive and quan-

titative phosphoproteomics will further facilitate the in-

tegration of SNRK1-TOR signaling networks [105].

Future challenges
The biological functions of plant sugar signals and sensors

in embryogenesis, seedling establishment, growth, me-

tabolism, juvenile-adult transition, flowering and senes-

cence have emerged. The molecular regulatory

mechanisms of the plant sugar-signaling network are

starting to be elucidated in the meristem, expanding

and differentiated cells (Figure 4). The application of

versatile and integrated molecular, cellular, genetic, ge-

nomic, phospho-proteomic and systems analyses will

facilitate the discoveries of new regulators and molecular

links in diverse mechanisms mediating sugar signaling.

Major puzzles await to be resolved include how the

different sugar sensors distinguish regulatory ligands with

high specificity in different physiological concentration

ranges, where these sensors act at the subcellular, cellular

and organismal levels [40,77�,102,106,107,108], what the

components are in these sensor complexes

[26,40,76,77�,109�,110,111], how they mediate the first

steps of signal transduction, what the mechanisms are in

the convergent or specific regulations by TOR, SNRK1

and HXK1 (Figure 4), as well as how parallel or integra-

tive signaling by other novel sugar sensors and signaling

components modulate a large array of downstream effec-

tors and responses (Figure 1). Finally, development of

sensitive and quantitative technologies for single-cell

based genetic and chemical perturbations and for tran-

scriptome, epigenome and metabolite profiling, as well as

application of genetic encoded biosensors for dynamic

imaging of sugar, energy or metabolite signaling will

likely lead to new discoveries. Much information will

be gained in understanding the plant energy-stress sig-

naling network by elucidating the antagonistic functions

of TOR and KIN10 as key energy sensors and central

regulators of transcriptional, translational and metabolic

programs in response to other nutrients, hormones, clock,

microbes and diverse environmental cues (Figure 4).
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