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Development is coordinated by dozens of signals that act in overlapping 
pathways to orchestrate multicellular growth. Understanding how 
signaling pathways intersect and diverge at a molecular level is critical 
to predicting how organisms will react to dynamic environmental 
conditions. In plants, two antagonistic signaling hubs are strictly required 
to sense and respond to many nutrients and hormones: TARGET OF 
RAPAMYCIN (TOR) and ETHYLENE INSENSITIVE 2 (EIN2). In this 
Landmark report, Fu et al. discover that TOR and EIN2 directly interact 
to choreograph growth and define an unexpected molecular mechanism 
at the intersection of hormonal and metabolic signaling networks1.
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Background

Eukaryotes coordinate metabolism through a con-
served signaling hub, the TARGET OF RAPAMYCIN 
(TOR) atypical serine/threonine kinase2–9. Nutrients 
and some hormones stimulate TOR, which phosphor-
ylates substrate proteins to engage multiple down-
stream pathways that broadly promote growth and  
anabolism10–13. When nutrients are limiting or condi-
tions are unfavorable for growth, TOR activity declines 
and cells become quiescent14. TOR dysregulation causes 
or contributes to diverse human diseases, including 
cancers and age-related disorders, which has provoked  
significant investigation of TOR signaling networks in 
biomedical models15. These efforts have only recently 
started to reveal how TOR can decipher myriad  
upstream cues to modulate precise downstream  
responses. Much less is known about the TOR signaling 
network in plants, but plant biologists are increas-
ingly interested in the potential benefits of genetically  
leveraging TOR regulatory systems to create resilient,  
high-yielding crops for a sustainable agricultural  
future.

Plants continually grow during their vegetative life 
cycle through cell division and expansion at shoot and 
root meristems and through cell expansion beyond 
the meristems16. Cell division and expansion are both  
developmentally coordinated by several phytohormones, 
including the gaseous phytohormone ethylene. Ethylene 
is popularly familiar for its role in fruit ripening: many 
fruits, such as apples and bananas, depend on ethylene 
for ripening. Ethylene also promotes seed germination, 
regulates development, and mediates responses to vari-
ous abiotic and biotic stresses. At a molecular level, eth-
ylene engages a well-defined signal transduction cascade 
that was first dissected through forward genetic screens 
for ethylene-insensitive mutants of Arabidopsis thaliana 
(Figure 1)17–19. One of the ethylene signaling compo-
nents, ETHYLENE-INSENSITIVE 2 (EIN2), is  a sig- 

naling   hub   of   elusive   molecular   function.  EIN2
 appears to play multifaceted roles in plant cells, 

since several ein2 alleles have been found in forward  
genetic screens for responses to various signals, including  
glucose20, paraquat-triggered oxidative stress21, and the 
phytohormones auxin22, cytokinin23, abscisic acid24,25, and 
jasmonic acid21. Since ethylene responses are blocked in 
ein2 mutants, these effects could reveal general connec-
tions between ethylene biosynthesis/signaling and other 
pathways (e.g., cytokinin acts, in part, by promoting  
ethylene biosynthesis), but several of these respons-
es cannot be readily explained through the role of 
EIN2 in ethylene signaling. In their Landmark report,  
Fu et al.1 make major advances in understanding how 
TOR and EIN2, two molecular signaling hubs, cooper-
ate to coordinate plant responses to diverse upstream cues  
and regulate growth and development.

Main contributions and importance

When seedlings are grown in complete darkness, a  
situation analogous to germination under the soil, their 
hypocotyls (embryonic stems) elongate until the seed-
lings encounter light. Unlike many stages of plant  
development, hypocotyls elongate exclusively through 
cell expansion, not division26–28. TOR and ethylene antag-
onistically regulate hypocotyl elongation: ethylene causes 
dark-grown seedlings to form short, thick hypocotyls19, 
whereas TOR promotes long, narrow hypocotyl growth29. 
To discover how TOR promotes hypocotyl elonga-
tion, Fu et al. screened for mutants involved in hypo-
cotyl growth and discovered that mutants defective in 
ethylene responses, ein2 and ein3;ein3-like1, are less 
sensitive to TOR inhibition and continue to grow even 
when TOR is inactivated. Surprisingly, however, etr1  
mutants defective in ethylene sensing upstream of 
EIN2 are not resistant to TOR inhibition, ethylene does 
not impact TOR activity in dark-grown seedlings, and  
inhibitors of ethylene biosynthesis and signaling 
also had no impact on TOR regulation of hypocotyl  
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elongation. These results strongly suggested that TOR 
acts through an ethylene-independent pathway that  
converges on EIN2 to coordinate growth.

Fu et al. next deployed a series of elegant experi-
ments to demonstrate that TOR directly interacts with 
EIN2 and phosphorylates Thr657, a broadly conserved  
residue in orthologues of EIN2 that had not been 
previously investigated. Biochemically mimicking  
EIN2-Thr657 phosphorylation in mutated “phospho-
mimetic” EIN2-T657D transgenic lines was sufficient  

to render seedlings insensitive to TOR inhibition,  
demonstrating that TOR-EIN2 signaling is critical to 
drive hypocotyl elongation. Strikingly, the phosphomi-
metic EIN2-T657D lines remain fully sensitive to eth-
ylene, which prevents phosphorylation of two different 
EIN2 residues, Ser645 and Ser924. Oppositely, phos-
phomimetic EIN2-S645D lines are ethylene-insensitive 
but remain sensitive to TOR inhibitors. Therefore, TOR 
and ethylene signaling intersect at the EIN2 signaling 
hub but act on EIN2 through distinct phosphosites to 
regulate hypocotyl elongation. Moreover, transcriptional 

Figure 1. Ethylene-ETR1-CTR1 and glucose-TOR signaling converge on the EIN2 signaling hub

Ethylene is perceived at the ER membrane (purple) by a family of receptors that includes ETR130,31. In the absence of ethylene, the receptors 
activate a cytosolic serine/threonine kinase, CTR1, which phosphorylates another ER-resident protein, EIN2, at residues Ser645 and Ser92431. 
Ethylene directly binds to and suppresses ETR1 receptors, preventing their activation of CTR1, and EIN2 (in the unphosphorylated state) is then 
proteolytically cleaved to release its cytosolic C-terminus from the ER membrane32–34; this fragment (“EIN2-C”) promotes the expression and 
activity of EIN3 family transcription factors through multiple mechanisms in the cytosol and nucleus (blue)35–39. EIN3 transcription factors drive 
the ethylene-response transcriptional program, including by directly promoting transcription of the much larger ERF family of ethylene-response 
transcription factors40–42. A classical consequence of ethylene signaling is repressed hypocotyl elongation in the dark19. In this Landmark study,  
Fu et al. discover that the TOR complex phosphorylates another EIN2 residue, Thr657. They present evidence that full-length EIN2, which 
potentially has distinct functions from EIN2-C21, accumulates in the nucleus when Thr657 is not phosphorylated by TOR1. When metabolic 
conditions are not favorable and TOR is inactive, Thr657 is not phosphorylated and EIN2 represses root meristem activity, at least in part by 
preventing E2FA-promoted cell cycle progression1.
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analysis of light-grown wild-type and mutant seedlings  
revealed that EIN2 is required for a majority of the  
glucose-triggered, TOR-dependent responses, suggesting 
that EIN2 is a key effector of TOR metabolic program-
ming in plants.

Open questions

This Landmark study provides a compelling model for 
understanding how cellular signal transduction net-
works interconnect and opens several new avenues for  
investigation in plant biology. Fu et al. provide evi-
dence that TOR-catalyzed EIN2-Thr657 phosphorylation 
prevents translocation of    full-length EIN2      from   the  ER  to 
the nucleus, whereas ethylene promotes cleavage and re-
lease of a soluble C-terminal fragment of EIN2 (EIN2-C) 
that promotes ethylene responses in the nucleus and  
cytosol. This raises the possibility that full-length EIN2 
has distinct activities from EIN2-C in the nucleus, and 
might constitute an uncharacterized translocation mech-
anism, since it is not obvious how a transmembrane  
ER protein could relocalize to the nucleus.

At the organismal level, both ethylene and TOR regu-
late growth, development, and physiology in contexts  
beyond the Arabidopsis seedling models used in this 
study. Does EIN2 mediate TOR signaling in these 
contexts? How do TOR and EIN2 interact to modu-
late responses to metabolic status, ethylene, and other  
phytohormones when plants experience abiotic stress, 
during ripening and senescence, or during pathogen  
attack? The discovery that TOR and EIN2 work closely 

together could help to illuminate how phytohormone 
signals and metabolic cues intersect throughout a  
plant’s lifespan.

Evolutionarily, ethylene signaling arose in early algal 
ancestors of plants43 and TOR was already present in 
the last eukaryotic common ancestor9. Moreover, the 
TOR-catalyzed phosphosite of EIN2, Thr657, appears 
to be conserved even in some bryophytes, hinting that  
TOR-EIN2 regulation may have evolved in the earliest 
land plants. Therefore, determining whether the TOR-
EIN2 signaling hub is functionally conserved beyond 
the Arabidopsis model system could reveal new targets 
for agricultural scientists working to breed resilient,  
high-yielding crops.

Conclusion

The convergence of TOR and EIN2 signaling  
networks through direct molecular and functional inter-
actions illustrates how complex upstream cues can be  
deciphered by cells to modulate specific downstream 
responses. This creative investigation from Fu et al. 
is a stellar example of how cell and molecular biology 
can be used to address classical problems—in this case, 
how plants integrate various signals, including nutri-
ents and hormones, to coordinate growth—and reveal  
underlying mechanisms. Going forward, the discovery of 
the TOR-EIN2 signaling hub will serve as a model for 
investigations of cellular signal transduction and pro-
voke new fundamental and translational research in plant  
physiology and development.
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