Fan Mou

Avruch Lab

  1. Regué L, Mou F, Avruch J. G protein-coupled receptors engage the mammalian Hippo pathway through F-actin: F-Actin, assembled in response to Galpha12/13 induced RhoA-GTP, promotes dephosphorylation and activation of the YAP oncogene. Bioessays 2013 May; 35(5):430-5.

  2. Mou F, Chen C, Guan J, Jing H. Oppositely charged twin-head electrospray: a general strategy for building Janus particles with controlled structures. Nanoscale 2013 Mar 7; 5(5):2055-64.

  3. 2012
  4. Avruch J, Zhou D, Fitamant J, Bardeesy N, Mou F, Barrufet LR. Protein kinases of the Hippo pathway: regulation and substrates. Semin. Cell Dev. Biol. 2012 Sep; 23(7):770-84.

  5. Mou F, Guan J, Ma H, Xu L, Shi W. Magnetic iron oxide chestnutlike hierarchical nanostructures: preparation and their excellent arsenic removal capabilities. ACS Appl Mater Interfaces 2012 Aug 22; 4(8):3987-93.

  6. Mou F, Xu L, Ma H, Guan J, Chen DR, Wang S. Facile preparation of magnetic ?-Fe?O?/TiO? Janus hollow bowls with efficient visible-light photocatalytic activities by asymmetric shrinkage. Nanoscale 2012 Aug 7; 4(15):4650-7.

  7. Mou F, Praskova M, Xia F, Van Buren D, Hock H, Avruch J, Zhou D. The Mst1 and Mst2 kinases control activation of rho family GTPases and thymic egress of mature thymocytes. J. Exp. Med. 2012 Apr 9; 209(4):741-59.

  8. 2011
  9. Huang X, Guan J, Xiao Z, Tong G, Mou F, Fan X. Flower-like porous hematite nanoarchitectures achieved by complexation-mediated oxidation-hydrolysis reaction. J Colloid Interface Sci 2011 May 1; 357(1):36-45.

  10. 2010
  11. Mou F, Guan JG, Shi W, Sun Z, Wang S. Oriented contraction: a facile nonequilibrium heat-treatment approach for fabrication of maghemite fiber-in-tube and tube-in-tube nanostructures. Langmuir 2010 Oct 5; 26(19):15580-5.

  12. Guan J, Mou F, Sun Z, Shi W. Preparation of hollow spheres with controllable interior structures by heterogeneous contraction. Chem. Commun. (Camb.) 2010 Sep 21; 46(35):6605-7.

  13. 2009
  14. Mou F, Wills E, Baines JD. Phosphorylation of the U(L)31 protein of herpes simplex virus 1 by the U(S)3-encoded kinase regulates localization of the nuclear envelopment complex and egress of nucleocapsids. J. Virol. 2009 May; 83(10):5181-91.

  15. Wills E, Mou F, Baines JD. The U(L)31 and U(L)34 gene products of herpes simplex virus 1 are required for optimal localization of viral glycoproteins D and M to the inner nuclear membranes of infected cells. J. Virol. 2009 May; 83(10):4800-9.

  16. Wisner TW, Wright CC, Kato A, Kawaguchi Y, Mou F, Baines JD, Roller RJ, Johnson DC. Herpesvirus gB-induced fusion between the virion envelope and outer nuclear membrane during virus egress is regulated by the viral US3 kinase. J. Virol. 2009 Apr; 83(7):3115-26.

  17. 2008
  18. Mou F, Wills EG, Park R, Baines JD. Effects of lamin A/C, lamin B1, and viral US3 kinase activity on viral infectivity, virion egress, and the targeting of herpes simplex virus U(L)34-encoded protein to the inner nuclear membrane. J. Virol. 2008 Aug; 82(16):8094-104.

  19. Shao SJ, Dong Y, Yan ZG, Mou FF, Zhuang TG, Zhao J. [Study on the visualization of the Lung Meridian of Hand-Taiyin]. Zhen Ci Yan Jiu 2008 Jun; 33(3):191-3.

  20. 2007
  21. Leach N, Bjerke SL, Christensen DK, Bouchard JM, Mou F, Park R, Baines J, Haraguchi T, Roller RJ. Emerin is hyperphosphorylated and redistributed in herpes simplex virus type 1-infected cells in a manner dependent on both UL34 and US3. J. Virol. 2007 Oct; 81(19):10792-803.

  22. Mou F, Forest T, Baines JD. US3 of herpes simplex virus type 1 encodes a promiscuous protein kinase that phosphorylates and alters localization of lamin A/C in infected cells. J. Virol. 2007 Jun; 81(12):6459-70.

Back to top