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Plant immune response to pathogens differs
with changing temperatures
Cheng Cheng1,*, Xiquan Gao2,3,*, Baomin Feng1, Jen Sheen4, Libo Shan2 & Ping He1

Temperature fluctuation is a key determinant for microbial invasion and host evasion. In

contrast to mammals that maintain constant body temperature, plant temperature oscillates

on a daily basis. It remains elusive how plants operate inducible defenses in response to

temperature fluctuation. Here we report that ambient temperature changes lead to pro-

nounced shifts of the following two distinct plant immune responses: pattern-triggered

immunity (PTI) and effector-triggered immunity (ETI). Plants preferentially activate ETI sig-

naling at relatively low temperatures (10–23 �C), whereas they switch to PTI signaling at

moderately elevated temperatures (23–32 �C). The Arabidopsis arp6 and hta9hta11 mutants,

phenocopying plants grown at elevated temperatures, exhibit enhanced PTI and yet reduced

ETI responses. As the secretion of bacterial effectors favours low temperatures, whereas

bacteria multiply vigorously at elevated temperatures accompanied with increased microbe-

associated molecular pattern production, our findings suggest that temperature oscillation

might have driven dynamic co-evolution of distinct plant immune signaling responding to

pathogen physiological changes.
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I
nnate immunity is triggered by the activation of immune
receptors through the detection of non-self components. The
first line of innate immunity is initiated by the detection of

pathogen-associated molecular patterns or microbe-associated
molecular patterns (MAMPs) through pattern-recognition recep-
tors. In plants, MAMPs are perceived by cell-surface receptor-like
kinases (RLKs) or receptor-like proteins to mount pattern-
triggered immunity (PTI)1,2. Bacterial flagellin and elongation
factor Tu are perceived by leucine-rich repeat RLK (LRR-RLK),
FLS2 and EFR, respectively3,4. Upon ligand perception, FLS2
and EFR rapidly associate with another LRR-RLK BAK1, thereby
initiating downstream signaling5,6. A receptor-like cytoplasmic
kinase BIK1 is quickly phosphorylated upon flagellin or
elongation factor Tu perception. BIK1 is associated with FLS2/
BAK1 and EFR/BAK1 receptor complexes and is directly
phosphorylated by BAK1 (refs 7,8). MAPK (mitogen-activated
protein kinase) cascades and CDPKs (calcium-dependent
protein kinases) act downstream of LRR-RLK receptor
complexes in transducing intracellular signaling events, which
ultimately lead to transcriptional reprogramming9,10. PTI
signaling could be downregulated by the turnover of MAMP
receptors. Two E3 ubiquitin ligases PUB12 and PUB13 interact
with and ubiquitinate FLS2 receptor for proteosome-mediated
degradation upon flagellin perception11.

Adapted pathogens are able to suppress PTI by producing
virulence effectors. In particular, many pathogenic bacteria
deliver a plethora of effector proteins into host cells through
type III secretion system (T3SS) to favour pathogen survival and
multiplication and mediate effector-triggered susceptibility. Many
of these effectors target important host components to sabotage
host immune responses and physiology12–14. To confine or
eliminate pathogens, plants further evolved intracellular
nucleotide-binding domain leucine-rich repeat (NLR) proteins
to directly or indirectly recognize effectors and initiate effector-
triggered immunity (ETI)15,16. Plant NLR proteins share the
structural similarity with mammalian NOD-like receptors that
perceive intracellular MAMPs and danger signals to initiate
inflammation and immunity17. Pseudomonas syringae effector
AvrRpt2 is recognized by Arabidopsis NLR protein RPS2, whereas
two sequence-unrelated effectors AvrRpm1 and AvrB are
recognized by RPM1 to initiate ETI responses including
transcriptional reprogramming and localized programmed cell
death termed as hypersensitive response (HR). Instead of direct
NLR–effector interaction, RPS2 and RPM1 monitor the perturba-
tion of host protein RIN4 targeted by pathogen effectors to
mount defense responses18,19. Specific calcium-dependent protein
kinases downstream of NLR proteins sense sustained increase in
cytosolic Ca2þ concentration and regulate the bifurcate defense
responses via phosphorylation of different substrates and
subcellular dynamics20.

Environmental factors often have profound impacts on
microbial invasion and host evasion21. Temperature fluctuates
both daily and seasonally and has long been considered as one of
the key determinants for disease epidemics22,23. In many cases,
virulence genes of mammalian pathogens are induced at 37 �C,
which is a typical body temperature of mammalians, but
are repressed below 30 �C (ref. 24). Accordingly, elevating
mammalian body temperature to fever range results in an
increase in MAMP-induced downstream signaling25. In contrast,
many virulence determinants in plant pathogenic bacteria are
induced at 16–24 �C and repressed at 428 �C (refs 26–28). For
instance, P. syringae effectors HrmA and AvrPto were secreted at
their highest amounts when the temperature was between 18 and
22 �C (ref. 26). The production of P. syringae phytotoxin
coronatine is also temperature-sensitive: induced at 18 �C and
repressed at 28 �C (ref. 29). Plant body temperature fluctuates

with their living environment on a daily basis. It remains
unknown whether and how plants integrate ambient temperature
oscillation with regulation of inducible defense programs
triggered by distinct pathogen components.

Here we show that plant immunity is inextricably linked with
ambient temperature changes. ETI signaling is preferentially
activated at relatively low temperatures (10–23 �C), whereas
PTI signaling is activated at moderately elevated temperatures
(23–32 �C). The temperature preference for PTI and ETI
signaling activation is coincident with the temperature effect on
bacterial physiology: the elevated temperatures inhibit bacterial
effector secretion but promote bacterial proliferation. The
interplay between temperature and plant immunity is further
supported by the enhanced PTI; however, reduced ETI responses
in Arabidopsis arp6 and hta9hta11 mutants, which phenocopy
plants grown at the elevated temperatures.

Results
Elevated temperatures promote PTI responses. To monitor the
specific immune responses at different ambient temperatures, we
first tested the impact of different temperatures on PTI responses.
Elicitation of PTI in Arabidopsis is accompanied by profound
immune gene transcriptional reprogramming. The PTI marker
genes WRKY29 and FRK1 were preferentially activated at the
elevated ambient temperatures between 23 and 32 �C in response
to flg22 (a 22-amino-acid peptide of bacterial flagellin) in Ara-
bidopsis leaves or protoplasts (Fig. 1a,b). The optimal temperature
for WRKY29 and FRK1 activation by flg22 was around 28 �C. The
activation was dramatically reduced when the temperature was
below 16 �C. Plants perceive a variety of MAMPs with different
receptors. The similar temperature preference was observed for
the activation of pWRKY29::LUC (the WRKY29 promoter fused
with a luciferase reporter) by other MAMPs, including bacterial
harpin Z (HrpZ), fungal chitin and oomycete necrosis-inducing
Phytophthora protein 1 (NPP1) (Fig. 1c). Perception of different
MAMPs elicits convergent early signaling events, including
MAPK activation. The MAPK activation in seedlings treated with
flg22 became gradually pronounced with the increased ambient
temperatures (Fig. 2a). Apparently, the activation of MAPKs by
flg22 at 28 or 23 �C occurred faster and stronger than that at
16 �C. Consistently, flg22-induced phosphorylation of BIK1 was
largely reduced at 16 �C but increased at 28 �C (Fig. 2b). It is
unlikely that the enhanced kinase activation results from the
elevated protein synthesis at higher temperatures, as the samples
were incubated at different temperatures for a relatively short
time period (from 5 to 45 min with 15 min pretreatment). Thus,
plants exhibit a preference to operate PTI responses at a relatively
high ambient temperature above 23 �C. The in vitro bacterial
growth assay indicates that bacterium P. syringae pv. tomato
DC3000 (Pst) multiplies more vigorously at the elevated ambient
temperatures above 23 �C than at temperatures below 16 �C
(Supplementary Fig. S1). The increased bacterial growth rate at
the elevated ambient temperatures likely leads to the production
of more MAMPs.

Elevated temperatures inhibit ETI responses. Our finding is
surprising, as it is generally believed that plant defense responses
are inhibited at moderately elevated temperatures30. We further
determined the temperature regulation of ETI responses triggered
by P. syringae effector AvrRpt2. To avoid the complication of
bacterial physiology, multiplication and effector secretion/
delivery at different temperatures, we examined the immune
responses in dexamethasone (Dex)-inducible AvrRpt2 transgenic
plants31. Treatment with Dex induced the expression of the
WRKY46 gene in Dex-AvrRpt2 plants20. Interestingly, the
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activation of WRKY46 by AvrRpt2 was also temperature sensitive
(Fig. 3a). However, a distinct temperature preference was
observed for ETI compared with PTI. The WRKY46 activation
was detectable when temperature was as low as 4 �C, peaked at
16 �C, but was significantly attenuated when the temperature was

428 �C. A similar WRKY46 induction pattern was observed
when AvrRpt2 was expressed in protoplasts at different tem-
peratures (Fig. 3a). We also detected the temperature modulation
of WRKY46 activation mediated by NLR protein RPM1
in response to P. syringae effector AvrRpm1 or AvrB (Fig. 3b).
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Figure 1 | Elevated temperatures promote gene activation in PTI signaling. (a) flg22-induced WRKY29 activation in Arabidopsis leaves and protoplasts at

different temperatures. Leaves or protoplasts from 4-week-old plants were treated with H2O or 100 nM flg22 for 3 h for RNA isolation and real-time

RT-PCR (qRT-PCR) analysis. The expression of WRKY29 was normalized to the expression of UBQ10. (b) flg22-induced FRK1 activation in Arabidopsis

protoplasts at different temperatures. Protoplasts from 4-week-old plants were treated with H2O or 100 nM flg22 for 3 h for RNA isolation and qRT-PCR

analysis. The expression of FRK1 was normalized to the expression of UBQ10. The gene activation fold is presented as the ratio of flg22 treatment to

H2O treatment with the mean±s.e.m. (n¼ 3) from three independent biological replicates. (c) Activation of pWRKY29::LUC by different MAMPs at

different temperatures. The protoplasts were transfected with pWRKY29::LUC and pUBQ::GUS as an internal control and treated with 10 nM flg22, 10 nM

HrpZ, 50mg ml� 1 chitin, or 20 nM NPP1 for 3 h at the indicated temperatures. GST is the control for NPP1. The promoter activity was shown as the ratio of

relative luciferase activity to GUS activity. The data are shown as mean±s.e.m. (n¼ 3) from three independent biological replicates. The above

experiments were repeated three times with similar results.
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Figure 2 | Elevated temperatures promote early PTI signaling. (a) flg22-induced MAPK activation at different temperatures. Ten-day-old WT seedlings

were treated with 100 nM flg22 at different temperatures for indicated time. MAPK activation was detected with an a-pERK antibody and Coomassie

Brilliant Blue staining of Rubisco (RBC) protein is shown for equal loading control. (b) flg22-induced BIK1 phosphorylation in protoplasts at different

temperatures. The band intensities of pMPK3, pMPK6, BIK1 and pBIK1 were quantified using the Image J software and presented with mean±s.e.m.

(n¼ 3) from three independent biological replicates. * indicates a significant difference with Po0.05 analysed with the SPSS software one-way ANOVA

analysis when compared with corresponding data from 16 �C. The above experiments were repeated three times with similar results.
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The optimal activation of WRKY46 by AvrRpm1 or AvrB was
also observed at 16 �C, and the elevated temperatures suppressed
WRKY46 activation. In addition, the AvrRpt2-mediated cell death
in Dex-AvrRpt2 plants was significantly reduced at 28 �C and was
almost completely abolished at 32 �C (Fig. 3c). Interestingly, cell
death was clearly observed even at 4 �C. The avrRpt2 gene was
expressed at a similar level after Dex treatment at different
temperatures (Fig. 3c). The cell death induced by bacteria Pst
carrying avrRpt2 was also inhibited at 32 �C (Supplementary
Fig. S2A). Similarly, AvrRpm1- and AvrB-mediated cell death
was significantly attenuated at the elevated temperatures when
they were expressed in protoplasts (Supplementary Fig. S2B). The
reduced activity of AvrRpt2, AvrRpm1 and AvrB at the elevated
ambient temperatures was not because of the reduced protein
expression (Fig. 4a). The data indicate that elevated temperatures
could suppress Arabidopsis NLR protein RPM1 and RPS2-
mediated ETI signaling. This observation is consistent with the
finding that disease resistance and HR induced by Pst carrying
avrRpt2 or avrRpm1 were reduced at 28 �C compared with that
at 22 �C (ref. 30).

Elevated temperature does not affect NLR and signaling gene
expression. The compromised NLR immune responses at the
elevated temperatures could be a result of the reduced transcript/
protein level of NLRs or other components in NLR signaling32.
We compared the RPS2 protein level in pRPS2::RPS2-HA
transgenic plants at 23 and 32 �C. The RPS2 protein level did
not differ significantly in plants incubated at 32 �C for 9 h
compared with that at 23 �C (Fig. 4b). Similarly, the transcripts of

RPM1, RPS2, RIN4, RAR1, NDR1 and SGT1b were comparable in
plants incubated at 23 and 32 �C (Fig. 4c, primer sequences are in
Supplementary Table). Thus, the short-term treatment with the
elevated ambient temperatures unlikely changed NLR protein
stability, signaling component transcripts or other plant phy-
siology. However, we cannot rule out the possibility of other
effects, such as differential subcellular localizations of NLR pro-
teins caused by temperature changes. AvrRpt2 degrades Arabi-
dopsis RIN4 protein to activate RPS2 signaling18,19. Apparently,
the AvrRpt2-mediated RIN4 degradation still occurred at 28 and
32 �C, although the HR was significantly blocked at these elevated
temperatures (Fig. 4d and Supplementary Fig. S2C). Similarly,
AvrRpm1-mediated RIN4 phosphorylation as shown with a
mobility shift seems not to be affected by the elevated tempera-
ture (Fig. 4e). The data suggest that the temperature operation of
ETI responses occurs independent or downstream of RIN4
modification.

Enhanced PTI responses in arp6–10 and hta9hta11 mutant
plants. Recent research has identified some important factors in
response to ambient temperature changes in plants33. In particular,
alternative histone H2A.Z nucleosomes are essential for
Arabidopsis to precisely perceive ambient temperature and may
function as an evolutionarily conserved thermosensor to regulate
the ambient temperature transcriptome34. H2A.Z-containing
nucleosomes wrap DNA more tightly than canonical H2A
nucleosomes and can modulate transcription in a temperature-
dependent manner. At elevated ambient temperature, H2A.Z
nucleosome occupancy declines, which leads to the expression of
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Figure 3 | Elevated temperatures inhibit ETI responses. (a) Activation of WRKY46 by AvrRpt2 at different temperatures. Four-week-old Dex-AvrRpt2

plants were hand-inoculated with H2O or 10 mM Dex, or the protoplasts were transfected with AvrRpt2 or a vector control, and incubated at different

temperatures for 6 h before sample collection for RNA isolation. The gene activation fold is presented as the ratio of AvrRpt2 expression to controls

with the mean±s.e.m. (n¼ 3) from three independent biological replicates. (b) Activation of WRKY46 by AvrRpm1 or AvrB at different temperatures. The

protoplasts were transfected with AvrRpm1, AvrB or a vector control and incubated at different temperatures for 6 h before sample collection for RNA

isolation. The data are shown as mean±s.e.m. (n¼ 3) from three independent biological replicates. * indicates a significant difference with Po0.05

analysed with the SPSS software one-way ANOVA analysis when compared with corresponding data from 16 �C. (c) Cell death in DEX-avrRpt2 transgenic

plants at different temperatures. The DEX-avrRpt2 transgenic plants were hand-inoculated with H2O or 10 mM Dex and incubated at different temperatures.

The cell death was recorded 24 hpi for plants incubated at 16, 23, 28 and 32 �C, 40 hpi for plants at 10 �C and 48 hpi for plants at 4 �C. The cell death

was shown with Trypan blue staining and % indicates the percentage of wilting leaves of total inoculated leaves. The expression of avrRpt2 after DEX

treatment is shown. Actin is the control for RT-PCR. The above experiments were repeated three times with similar results.
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warm-temperature-responsive genes. Consistently, in the absence
of H2A.Z deposition, plants display constitutive warm-temperature
responses34. The Arabidopsis mutants deficient in incorporating
H2A.Z into the nucleosomes, such as arp6 and hta9hta11,
phenocopy plants grown at the elevated ambient temperature
and possess constitutive warm-temperature transcriptome34. We
therefore determined the PTI and ETI responses in arp6 and
hta9hta11 mutants. We first compared the flg22-induced MAPK
activation in hta9hta11 and arp6 mutants at 23 �C. Apparently, the
activation of MAPKs by flg22 was stronger in both hta9hta11 and
arp6 mutants than that in wild-type (WT) plant seedlings, in
particular 15 min after treatment (Fig. 5a). The induction of PTI
marker genes, including FRK1 and At2g17740, by flg22 treatment
was also enhanced in hta9hta11 and/or arp6 mutants compared
with that in WT seedlings (Fig. 5b). Consistent with the enhanced
PTI responses, it has been reported that hta9hta11 mutant dis-
played enhanced resistance to Pst infection35.

Reduced ETI responses in arp6–10 and hta9hta11 mutant
plants. In contrast to the enhanced PTI responses, the ETI
responses were reduced in the hta9hta11 and arp6 mutants. The
inoculation of Pst avrRpt2 or avrRpm1 at a relatively high
inoculum elicits an HR in WT Arabidopsis plants. The leaves
inoculated with Pst avrRpt2 show tissue collapse at about 12–24 h
post inoculation (hpi), and the Pst avrRpm1-inoculated leaves
show collapse at about 4–12 hpi. The progression of Pst avrRpt2-
and avrRpm1-triggered HR was slower in the hta9hta11 and arp6
mutants than that in WT plants (Fig. 6a,b). We also quantified
HR using an electrolyte leakage assay. Consistently, compared
with WT plants, hta9hta11 and arp6 mutants showed a com-
promised increase in conductance because of the release of

electrolytes during cell death upon Pst avrRpt2 or avrRpm1
infection (Fig. 6c,d). The in planta bacterial multiplication of Pst
avrRpt2 increased about 10-fold in the hta9hta11 and arp6
mutants compared with that in WT plants (Fig. 7a). The bacterial
multiplication of Pst avrRpm1 increased about fivefold in the arp6
mutant compared with that in WT plants (Fig. 7a). The Pst
avrRpt2 or avrRpm1 infection induces expression of several
defense-related genes, such as AIG1 and PR1. The induction of
AIG1 and PR1 by Pst avrRpt2 or avrRpm1 was significantly lower
in hta9hta11 and arp6 mutants than that in WT plants (Fig. 7b).
The data are consistent with the differential operation of two
branches of plant innate immune signaling at different
temperatures.

Discussion
Microbe and host have co-evolved dynamically in their arms race
for fitness and survival. Environmental factors often influence the
physiological responses in both sides and have profound impacts
on microbial pathogenesis and host immunity. In this study, we
performed the quantitative assay of immune responses based on
the activation of specific marker genes and found the differential
temperature preference for the activation of two branches of plant
innate immunity. Bacterial effector-triggered immune responses
are preferentially activated at relatively low ambient temperatures,
which are suitable for effector secretion, and are suppressed at the
elevated ambient temperatures. The inhibition of ETI responses
was not caused by the reduced expression of effectors,
corresponding NLR receptors or known signaling components.
In contrast, pattern-triggered immune responses are preferen-
tially activated at the elevated ambient temperatures, which are
optimal for bacterial growth, and are suppressed at low
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temperatures. Consistently, the immune responses of arp6 and
hta9hta11 mutant plants, which are deficient in temperature
sensing and phenocopy high-temperature-grown plants, mimic
the responses of plants at the elevated temperatures with
enhanced PTI signaling and yet reduced ETI signaling. Plant
PTI signaling is initiated via cell-surface RLKs, whereas ETI
signaling is mediated through intracellular NLR immune
receptors. Although the precise mechanisms of how temperature
sensing and signaling modulate the distinct plant immune
responses are waiting to be elucidated, the differential tempera-
ture preferences of PTI and ETI responses suggest the distinct
early signaling events downstream of cell-surface RLKs and
intracellular NLR immune sensors. Our findings may have broad
implication for agricultural practices to optimize plant immunity
by considering the temperature-based defense strategies. Our

study also provides insight into the effects of the current global
climate change on plant disease management.

Plant NLR proteins differ in the N-terminal domain and were
further divided into coiled-coil (CC)-domain-containing- and
Toll-interleukin-1 receptor (TIR)-domain-containing classes17,36.
Growing evidence suggests the signaling activation in distinct
subcellular compartments in TIR-NLR- and CC-NLR-mediated
immunity37. In several cases, TIR-NLR-mediated immunity is
temperature sensitive38–41. For instance, the tobacco mosaic
virus resistance N gene- and Arabidopsis SNC1 gene-mediated
responses are compromised at the elevated ambient temperatures
above 28 �C (refs 38,39). Interestingly, suppressor screens and
targeted mutagenesis suggest that SNC1 itself is a temperature-
sensitive component of plant immune responses42. Several TIR-
NLR immune receptors function in the nucleus40,41,43,44, whereas
RPM1 and RPS2, the CC-NLR immune receptors, localize to the
plasma membrane to initiate ETI signaling18,45. Our study
indicates that RPM1- and RPS2-mediated responses are also
largely compromised at temperatures 428 �C. Thus, both CC-
NLR and TIR-NLR signaling pathways are modulated by ambient
temperatures.

Unexpectedly, we found that cell-surface-resident RLK-
mediated PTI signalling is also temperature sensitive, with a
pattern distinct from ETI signalling. In contrast to gradually
compromised ETI responses, PTI responses become incremen-
tally active with the elevated ambient temperatures (Fig. 7c). The
differential temperature preference for the optimal operation of
PTI and ETI signaling reconciles an enigmatic observation that
the elevated temperatures inhibit bacterial effector secretion and
yet promote bacterial proliferation26,27. Accordingly, plants have
evolved combating mechanisms to maximize the PTI responses
and turn down specific NLR-mediated responses to cope with a
broad spectrum of microbial invasions at the elevated
temperatures. At low ambient temperatures, bacteria secrete a
large suite of virulence effectors to promote pathogenicity26,
which in turn stimulates plants to co-evolve and preferentially
activate ETI signaling (Fig. 7c). The primary function of these
virulence effectors is to suppress PTI and induce effector-
triggered susceptibility, which is accompanied with ETI in the
plants carrying the corresponding receptors. Our results suggest
that ambient temperature fluctuation drives the dynamic
co-evolution of bacterial pathogenesis and host immunity, and
plants integrate ambient temperature sensing to regulate two
distinct branches of innate immunity mediated by cell-surface
RLK and intracellular NLR immune sensors.

ARP6 encodes a subunit of the evolutionarily conserved SWR1
complex that is necessary for inserting the alternative histone
H2A.Z encoded by HTA gene family members into nucleosomes
in place of H2A34,35. Arabidopsis arp6 and hta9hta11 mutants are
deficient in incorporating histone H2A.Z into nucleosomes and
display a constitutive warm-temperature transcriptome34. The
finding that arp6 and hta9hta11 phenocopy the plants grown at
high temperatures on immunity points at a possible link between
temperature-driven immune responses and transcriptional
changes. It will be interesting to test whether arp6 and
hta9hta11 mutants could suppress the temperature-dependent
cell death in snc1-1, mekk1 and mpk4 mutants39,46. Notably, the
hta9hta11 mutant also displayed constitutive expression of certain
defense-related genes, spontaneous cell death and increased
resistance to Pst infections, suggesting a link between H2A.Z-
regulated gene expression and plant immunity35. Consistent with
this observation, we showed that arp6 and hta9hta11 mutants
have enhanced flg22-mediated responses. However, the ETI
responses are suppressed in arp6 and hta9hta11 mutants,
suggesting the opposite role of H2A.Z-containing nucleosomes
in modulating PTI and ETI responses. Future study will uncover
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detected using qRT-PCR and normalized to the expression of UBQ10.
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similar results.
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the molecular link between H2A.Z-mediated temperature
perception and specific responses in ETI and PTI signaling.

Methods
Plant growth conditions and temperature treatment. Arabidopsis WT (Col-0),
arp6–10 and hta9hta11 mutant plants were grown in pots containing soil (Metro
Mix 360) in a growth room at 23 �C, 60% relative humidity and 75 mE m� 2 s� 1

light with a 12-h photoperiod for B4 weeks before protoplast isolation, bacterial
inoculation or different temperature treatments. The arp6–10 and hta9hta11
mutant seeds were obtained from Dr. P. Wigge of the John Innes Centre. To test
temperature effects, plants were transferred to individual growth chambers set at
different temperatures 15 min before treatments and treated for the indicated time.

Bacterial inoculation assay. Pst, Pst avrRpm1 or avrRpt2 strains were grown
overnight at 28 �C in the KB medium containing rifamycin (50mg ml� 1) or in
combination with kanamycin (50 mg ml� 1). Bacteria were pelleted by centrifuga-
tion, washed and diluted to the desired density. The leaves were hand-inoculated
with bacteria using a needleless syringe, collected at the indicated time for bacterial
counting, cell death staining, electrolyte leakage assays or for RNA isolation. To
measure bacterial growth, two leaf discs were ground in 100 ml H2O, and serial
dilutions were plated on KB medium with appropriate antibiotics. Bacterial colony
forming units (cfu) were counted 2 days after incubation at 28 �C. Each data point
is shown as triplicates.

At least three independent repeats were performed for all experiments. The
representative data with similar results were shown. The statistical analysis was
performed with the SPSS software one-way analysis of variance (ANOVA) analysis
(SPSS Inc., Chicago).

Protoplast transient assay. Protoplast isolation and transient expression assays
were conducted as described7,20. In general, 50ml protoplasts at the density of
2� 105 ml� 1 and 10mg DNA were used for promoter activity; 100ml protoplasts
and 20mg DNA were used for protein expression; and 500 ml protoplasts and
100mg DNA were used for RT-PCR analyses. For reporter assay, pUBQ10::GUS
was cotransfected as an internal transfection control, and the promoter activity was
presented as LUC/GUS ratio. Protoplasts transfected with empty vector were used
as a control.

MAPK activity and BIK1 phosphorylation assays. To detect MAPK activity,
10-day-old WT, hta9/hta11 and arp6–10 seedlings grown on 1/2MS medium were

transferred to water for overnight and then treated with 100 nM flg22 or H2O for
indicated time points and frozen in liquid nitrogen. The seedlings were homo-
genized in an extraction buffer containing 50 mM Tris-HCl, pH7.5, 100 mM NaCl,
15 mM EGTA, 10 mM MgCl2, 1 mM NaF, 0.5 mM NaVO3, 30 mM b-glycer-
ophosphate, 0.1% IGEPAL, 0.5 mM PMSF and 1% protease inhibitor cocktail.
Equal amount of total protein was electrophoresed on 10% SDS–PAGE. An
a-pERK antibody (1:2,000) (Cell Signaling) was used to detect phosphorylation
status of MPK3 and MPK6 with an immunoblot. For different temperature
treatments, the seedlings were pretreated at different temperatures for 15 min and
then treated with 100 nM flg22 or H2O for 10 min.

For BIK1 phosphorylation assay, Arabidopsis protoplasts were transfected with
HA epitope-tagged BIK1 and incubated at room temperature for overnight,
pretreated at 16, 23 or 28 �C for 15 min and then treated with 100 nM flg22 or H2O
for 10 min. Total protein was separated using 10% SDS–PAGE gels followed by an
a-HA immunoblot (1:2,000). Full blots are provided in Supplementary Figs S3–S7.

Cell death assays. For HR assays, the leaves of 4-week-old plants were hand-
inoculated with 10mM DEX or different bacteria at 1� 108 cfu ml� 1, and the cell
death was calculated as the percentage of wilting leaves to total leaves inoculated.

For trypan blue staining, leaves of DEX-AvrRpt2 plants were inoculated with
H2O or 10mM DEX and collected at 24 hpi after treatment. The leaves were stained
with trypan blue in lactophenol (lactic acid:glycerol:liquid phenol:distilled
water¼ 1:1:1:1) solution, then destained with 95% ethanol/lactophenol solution
and washed with 50% ethanol. For electrolyte leakage assays, five leaf discs (0.5 cm
diameter) were excised from the WT or mutants infiltrated with bacteria and pre-
floated in 10 ml of ddH2O for 10–15 min to eliminate wounding effect. The ddH2O
was then changed and electrolyte leakage was measured using a conductivity meter
(VWR; Traceable Conductivity Meter) at 12, 18 and 24 hpi for Pst avrRpt2 or 3, 6, 9
and 12 hpi for Pst avrRpm1 with three replicates per time point per sample.

RT-PCR and qRT-PCR analyses. Total RNA was isolated from leaves or proto-
plasts with TRIzol Reagent (Invitrogen). One microgram of total RNA was used for
complementary DNA (cDNA) synthesis with oligo (dT) primer and reverse
transcriptase (New England BioLabs). qRT-PCR analysis was carried out using
iTaq SYBR green Supermix (Bio-Rad) supplemented with ROX in an ABI
GeneAmp PCR System 9700. The expression of PTI and ETI marker genes was
normalized to the expression of UBQ10. The regular RT-PCR was performed with
35 cycles. The primer sequences are described in Supplementary Table S1.
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